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A Hybrid Learning and Model-Based Optimization
for HVAC Systems: A Real World Case Study

Dan Wu?, Pallavi Bharadwaj?, Qing Gao�, and Marija Ilic?

Abstract—This paper discusses how to effectively integrate
learning and model-based methods to optimize economic costs
and operational efficiency of heating, ventilation, and air-
conditioning (HVAC) systems. By leveraging learning-based
methods, heuristics and manufacturing data of each unit in
HVAC systems can be well approximated and integrated into
the optimization framework. This paper provides an accurate
and flexible modeling of an HVAC system to reach a highly eco-
nomic and efficient daily operation schedule. To demonstrate the
efficacy of proposed method, a real world public infrastructure is
considered with detailed models and historical operational data.
After combining data-driven models and physical models, the
overall optimization problem formulation falls into the category
of mixed-integer nonlinear optimization, and is further converted
into a smooth nonlinear problem for easy-solving. Numerical
results are compared to the existing energy consumption record,
showing a substantial saving (50%) from the proposed method.

Index Terms—HVAC, Coefficient of Performance, Optimiza-
tion, Learning-based method, Model-based method

I. INTRODUCTION

Commercial buildings constitute 40% of the present energy
consumption in the United States [1]. In order to reduce the
carbon footprint of heating, ventilation, and air-conditioning
(HVAC) systems’ global energy consumption [2], it is crucial
to optimize their operational strategies [3]. However, the
energy management of commercial buildings is a challenging
task [4]. The energy consumption costs in industrial infrastruc-
ture find direct correlation with the HVAC constituting more
than half the operational cost [5].

In order to solve this HVAC operation optimization problem
for reducing cost, increasing efficiency, and improving user
comfort [6], both model-based methods [7]–[10] and data-
driven methods [4], [11] have been proposed. A majority of
the data-driven methods [4], [11] needs a large training dataset
and suffers from computational complexity with marginal
reduction in operating energy costs. On the other hand, existing
model-based methods usually apply approximations such as
the RC network models, constant efficiency, and constant
coefficient of performance (COP) [12] to simplify the char-
acteristic of each unit as a gray box. Such simplification
substantially loses the time-varying features of HVAC units
in different working conditions, ignores physical couplings of
multi-thermal process within complex units such as flue gas
hot water residual heat gas absorption chillers, and disregards
thermal couplings between zones [13].
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Existing work comparing data-driven and model-based
methods can be found in [14]. It shows that model-based
methods can outperform data-driven methods in accuracy;
while data-driven methods can outperform model-based meth-
ods in speed. To take advantage of both methods while avoid
their drawbacks, we leverage both learning-based methods
and model-based methods by formulating an efficient hybrid
optimization framework to improve the energy consumption
cost of a real world public infrastructure, given its equip-
ment configurations, limited operation data, and environmental
records in a period of time.

When dealing with real industrial systems, we were facing
the situation of lacking explicit models and measurements for
many commercial components. Therefore, we firstly focused
on how to construct reasonable models from the limited data
by learning-based methods. Specifically, we separate the flue
gas hot water residual heat gas absorption chiller into three
sub-chillers, and treated their COPs individually with different
polynomial fittings. Such separated models are necessary since
each sub-chiller has a different energy input source, which is
supplied by other units in the station. Ignoring different causal
relationships will render less credible results. However, some
existing literature considers the flue gas hot water residual heat
gas absorption chiller as an integrated component with a single
COP. This simplification substantially reduces the flexibility
and possibility of finer control within the unit, yielding sub-
optimal scheduling. Then, based on the data-driven models we
further optimized the total energy consumption for the given
historical period of time, and compared to the true energy
consumption recorded in the same period to demonstrate the
cost improvement gained from the proposed method.

II. HVAC SYSTEM MODELLING

A. A General Description of the Energy Station

The commercial energy station considered in this paper is
installed in a real-world public infrastructure. See Fig. 1 [15].
It is supposed to maintain the indoor temperature, humidity,
and concentration of carbon dioxide in particular public zones
of the infrastructure. There are totally eight cooling, heating
and power units in the energy station:

1) Gas-fired generator ×2, Cummins C1160N5C;
2) Flue gas hot water residual heat gas absorption chiller

using Lithium-Bromide salt ×2, Broad BZHE400;
3) Direct-fired gas absorption chiller ×1, Broad BZ400;
4) Centrifugal electric chiller ×2, York (Johnson controls)

YKM2MRK25DBG;
5) Gas-fired hot water boiler×1, Tuff Boiler WNSCQ8000.
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Fig. 1: Energy Station Diagram

According to the energy station record, the direct-fired
gas absorption chiller seldom operates (serves as backup
unit), and thus, can be safely ignored in our normal optimal
operation studies. We focus our investigations on the period
from September 1st to September 7th, 2019 with detailed daily
temperature and energy consumption data for comparison.
From the temperature records it can be implied that cooling
was the objective, which further simplifies our model by
neglecting the boiler unit.

B. Gas-fired generator

Gas-fired generators are usually fast-ramping units which
can reach their rated output power in minutes. In our modeling
with the minimum scheduling time interval being 1 hour, we
can safely ignore the dynamics of generators and assume they
adjust output power in a (quasi) steady state manner. Thus,
the generator is modeled as

Vgg =
Qgg,rt Lgg
ηgg γg2p

× 3600 T (1a)

ηgg = ηgg(Lgg) (1b)
Tfg = Tfg(Lgg) (1c)
Mfg = Mfg(Lgg) (1d)

Lgg,min ≤ Lgg ≤ Lgg,max (1e)

where Vgg is the gas consumption in m3; Qgg,rt = 1160kW
is the rated electric power output [16]; Lgg is the unit-less
loading level of the generator; γg2p = 36 MJ/m3 is the
heat from burning a cubic meter gas [16] (its value can vary
according to different compositions of the natural gas); T is
the operating hours; ηgg is the efficiency of the generator
from the input heat power to the output electric power, which
is a function of the loading level Lgg; Tfg is the flue gas
temperature in Celsius of the generator, which is a function of
the loading level Lgg; Mfg is the flue gas mass flow rate in
kg/s of the generator, which is a function of the loading level
Lgg; Lgg,min = 0.5 and Lgg,max = 1.1 are the minimum and
maximum loading levels.

C. Flue gas hot water residual heat gas absorption chiller
using Lithium-Bromide salt

The flue gas hot water residual heat gas absorption chiller,
abbreviated as “gas absorption chiller”, comprises three differ-
ent cooling sub-chillers: (1) direct gas-fired sub-chiller, (2) flue
gas sub-chiller, and (3) hot water sub-chiller. The direct gas-
fired sub-chiller burns natural gas directly to provide cooling
(heating). The flue gas sub-chiller uses high temperature flue
gas from the gas-fired generator as the power input. The hot
water sub-chiller uses the high temperature cooling water out
of the gas-fired generator as its input.

Existing literature usually combines these three sub-chillers
into one integrated chiller model for simplification. This
model blurs their different working characteristics, and loses
opportunities of scheduling them separately to achieve a better
operating condition. In this paper we treat each sub-chiller
individually but also consider their overall interconnected
constraints for a more accurate modeling.

1) Direct gas-fired sub-chiller: The direct gas-fired sub-
chiller is modeled as follows.

Vgf =
Qgf,rt Lgf
γg2p COPgf

× 3600 T (2a)

COPgf = COPgf (Lgf , Tws, Twc) (2b)
Lgf,min ≤ Lgf ≤ Lgf,max (2c)

where Vgf is the gas consumption in m3; Qgf,rt = 4652kW
is the rated cooling power output [17]; Lgf is the unit-less
loading level of the gas-fired sub-chiller; COPgf is the COP
of gas-fired sub-chiller, which is a function of the loading
level Lgf , the required supply cold water temperature Tws,
and the supply cooling water temperature Twc; Lgf,min = 0.7
and Lgf,max = 1.15 are the minimum and maximum loading
levels.

2) Flue gas sub-chiller: The flue gas sub-chiller is modeled
as follows.

Mfg =
Qgf,rt Lgf

γfg2p
(
Tfg − Tfg,out

)
COPfg

(3a)

COPfg = COPfg(Lfg, Tfg, Tws, Twc) (3b)
Lfg,min ≤ Lfg ≤ Lfg,max (3c)

Tfg,out,min ≤ Tfg,out ≤ Tfg,out,max (3d)

where Mfg is the input flue gas mass flow rate in kg/s, which
is provided by Eqn (1d); Tfg is the input flue gas temperature
in Celsius, which is provided by Eqn (1c); Tfg,out is the output
flue gas temperature in Celsius; γfg2p = 1.2 kJ/kg °C is the
heat capacity of flue gas [17]; Qfg,rt is the rated cooling
power output, which can occupy at most 30% of Qgf,rt [17];
Lfg is the unit-less loading level of the flue gas sub-chiller;
COPfg is the COP of flue gas sub-chiller, which is a function
of the loading level Lfg , the temperature of the flue gas
Tfg , the required supply cold water temperature Tws, and
the supply cooling water temperature Twc; Lfg,min = 0.6
and Lfg,max = 1.2 are the minimum and maximum loading
levels; Tfg,out,min = 140 � and Tfg,out,max = 300 � [17]
are minimum and maximum temperatures of the exhausted
output flue gas.
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3) Hot water sub-chiller: The hot water sub-chiller is
modeled as follows.

Mhw =
Qhw,rt Lhw

γw2p

(
Thw − Thw,out

)
COPhw

(4a)

COPhw = COPhw(Lhw, Thw, Tws, Twc) (4b)
Lhw,min ≤ Lhw ≤ Lhw,max (4c)

Thw,out,min ≤ Thw,out ≤ Thw,out,max (4d)

where Mhw = 19.4 kg/s is the input hot water mass flow rate
[16], which is directly from the generator high temperature
cooling water; Thw = 90� is the input hot water temperature
[16], which is the temperature of the generator output cooling
water; Thw,out is the hot water output temperature in Celsius;
γw2p = 4.2 kJ/kg °C is the heat capacity of water [17];
Qhw,rt is the rated cooling power output, which can occupy
at most 23% of Qgf,rt [17]; Lhw is the unit-less loading
level of the hot water sub-chiller; COPhw is the COP of hot
water sub-chiller, which is a function of the loading level
Lhw, the temperature of the hot water Thw, the required
supply cold water temperature Tws, and the supply cooling
water temperature Twc; Lhw,min = 0.5 and Lhw,max = 1.1
are the minimum and maximum loading levels; Thw,out,min
and Thw,out,max = 80 � [16] are minimum and maximum
temperatures of the exhausted output hot water.

4) Overall interaction constraints on all sub-chillers: As
stated above, the gas absorption chiller has three sub-chillers
working together to provide the desired cooling (heating)
capacity. From the manufacturing specifics in [17], they must
satisfy an overall cooling capacity constraint, which is stated
below.

0.05 ≤ sgfLgf +
sgg

(
Qfg,rtLfg +Qhw,rtLhw

)
Qgf,rt

≤ 1.15

(5)
where sgf is the binary variable taking values between 1 and
0 that indicates whether the direct gas-fired sub-chiller is on
or off; sgg is the binary variable taking values between 1 and
0 which indicates whether the gas-fired generator is on or off.

D. Centrifugal electric chiller

The centrifugal electric chiller is equipped with variable
speed controllers. However, the manufacturing book [18] does
not provide detailed COP data in different working conditions.
Therefore, we have to make an optimistic assumption that the
COP is a constant value whatever the loading level is. The
chiller model is given below.

Ecc =
Qcc,rt Lcc

COPcc
(6a)

Lcc,min ≤ Lcc ≤ Lcc,max (6b)
(6c)

where Qcc,rt = 4571kW is the rated cooling power [18];
Lcc is the unit-less loading level of the centrifugal chiller;
COPcc = 5.615 is the COP of centrifugal electric chiller,
which is calculated at the rated power condition; Lcc,min =
0.05 and Lcc,max = 1.0 are the assumed minimum and
maximum loading levels.

III. LEARNING MANUFACTURING HEURISTICS

Recall Eqn (1b), (1d), (1c), (2b), (3b), and (4b), they capture
important unit characteristics under different operating con-
ditions. However, these characteristics are implicitly defined
and influenced by many factors, for example, the structural
designs of equipments, properties of different materials, and
very complicated physical processes. To obtain an accurate
heuristic model, we apply the polynomial fitting technique
to learn basic characteristic functions for different working
conditions.

Specifically, polynomials are used to approximate these
characteristics. Since manufacturing tests were carried out
for a limited working conditions, we restrict our highest
polynomial degree to 2 to avoid over-fitting.

ηgg = aηggL
2
gg + bηggLgg + cηgg (7a)

Mfg = aMfg
L2
gg + bMfg

Lgg + cMfg
(7b)

Tfg = aTfg
L2
gg + bTfg

Lgg + cTfg
(7c)

COPr = aCOPr
L2
r + bCOPr

Lr + cCOPr

+ ACOPr
T 2
r +BCOPr

Tr + CCOPr

+ uCOPr
T 2
ws + vCOPr

Tws + wCOPr

+ αCOPr
T 2
wc + βCOPr

Twc + θCOPr
(7d)

where a, A, u, and α are the coefficients for the quadratic
terms; b, B, v, and β are the coefficients for the linear terms;
and c, C, w, and θ are the coefficients for constant terms;
subscript COP means the coefficient associated with COP;
both subscript and sub-subscript r ∈ {gf, fg, hw} in which
“gf” means gas-fired generator, “fg” means flue gas sub-
chiller, and “hw” means hot water sub-chiller. When r = gf ,
the ACOPgf

= BCOPgf
= CCOPgf

= 0.
According to [17], in the direct gas-fired sub-chiller once

Lgf and Tws are given, the cooling water temperature Twc
can be uniquely determined by the look-up chart, suggesting
a mapping f : (Lgf , Tws) 7→ Twc. It is also the case for
the flue gas sub-chiller g : (Lfg, Tfg, Tws) 7→ Twc and the
hot water sub-chiller h : (Lhw, Thw, Tws) 7→ Twc. Thus, we
can safely drop the terms associated with the cooling water
temperature Twc in (7d), yielding

COPr = aCOPr
L2
r + bCOPr

Lr + cCOPr

+ ACOPr
T 2
r +BCOPr

Tr + CCOPr

+ uCOPr
T 2
ws + vCOPr

Tws + wCOPr
(8)

Regression techniques are applied to learn the coefficients in
(7a), (7b), (7c), and (8). The root mean square error (rmse)
of the multi-variable polynomial fitting for each unit is less
than 2% in our particular real-world energy station example.

IV. OVERALL OPTIMIZATION FORMULATION

Once the characteristic functions of (1b), (1d), (1c), (2b),
(3b), and (4b) have been learned, each unit is well-defined.
Hence, we can formulate the overall optimization problem for
the daily scheduling.

min:
K∑
k=1

2∑
i=1

(
sgg,i[k] Vgg,i[k] Cgas[k]
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+sgf,i[k] Vgf,i[k] Cgas[k]

+scc,i[k] Ecc,i[k] Ce,buy[k]

+sgg,i[k] Qgg,rt Lgg,i[k] Ce,sale[k] T [k]

)
(9a)

s.t.: Eqn. (1) (2) (3) (4) (5) (6) (9b)(
sgg,i[k] Lfg,i[k] Qfg,rt +

sgg,i[k] Lhw,i[k] Qhw,rt +

sgf,i[k] Lgf,i[k] Qgf,rt +

scc,i[k] Lcc,i[k] Qcc,rt

)
T [k] ≥ Qld[k] (9c)

i = {1, 2} (9d)
sgg,i[k], sgf,i[k], scc,i[k] = {0, 1} (9e)

where k indicates different periods in a day; K means the total
number of time periods; subscript i indicates the numbering
of the unit; sgg,i, sgf,i, and scc,i are binary variables that
determine if the associated units are on or off; Cgas is the
natural gas purchase price RMB/m3; Ce,buy is the electricity
purchase price RMB/kWh; Ce,sale is the electricity sale price
RMB/kWh, which should take the negative value if we regard
spending as positive; Qld is the cooling load demand in kWh.

The objective function (9a) sums up the total gas expen-
diture, total electricity expenditure, and the total electricity
sale revenue. Constraint (9c) indicates that at each time step
k the total heat removal should not be less than the minimum
cooling Qld[k], which is the minimum accumulative heat
removal to achieve the intra-hourly temperature control.

Problem (9) is a mixed-integer nonlinear optimization prob-
lem which is usually hard to solve. We relax the binary
constraint (9e) by the following inequalities to make the prob-
lem continuous. Once solved by some smooth optimization
solver, the relaxed binary variables are rounded to the nearest
integers. Then, fixing all the binary variables and re-run the
smooth solver to obtain the optimal scheduling under this unit
commitment configuration.

st,i[k] (st,i[k]− 1) ≤ 0 (10)

where subscript t ∈ {gg, gf, cc}. Hence, the overall unknown
variables include sgg,i[k], Lgg,i[k], ηgg,i[k], Tfg,i[k], Mfg,i[k],
Vgg,i[k], sgf,i[k], Lgf,i[k], COPgf,i[k], Vgf,i[k], Lfg,i[k],
Zfg,i[k], Tfg,out,i[k], COPfg,i[k], Lhw,i[k], Thw,out,i[k],
COPhw,i[k], scc,i[k], Lcc,i[k], and Ecc,i[k] for all i and k.

V. NUMERICAL SIMULATIONS

Numerical simulations are conducted in Matlab 2017 envi-
ronment on a 64-bit personal computer with an Intel i7 2.8GHz
CPU and 16GB RAM. The primal-dual interior point solver
“IPOPT” [19] is used for solving the continuous problem.

Based on the energy station record from Sep 1st to Sep
7th, 2019, our model yields an optimal scheduling for that
week. Each day is divided into 8 subsequent periods based on
different electricity purchase prices. They are listed in Table I.
So k = 1, . . . , 8 in (9a). Each period demand Qld[k] in (9c)
is provided by the record so that our problem formulation
forces any feasible solution to satisfy the historical data. Then,

TABLE I: Daily Periods and Unit Prices

Time Period Purchase Price
(RMB/kWh)

Sale Price
(RMB/kWh)

Gas Price
(RMB/m3)

00:00 - 07:00 0.3941 0.6633 2.92
07:00 - 08:00 0.5941 0.6633 2.92
08:00 - 11:00 0.7441 0.6633 2.92
11:00 - 15:00 0.5941 0.6633 2.92
15:00 - 19:00 0.7441 0.6633 2.92
19:00 - 22:00 0.8441 0.6633 2.92
22:00 - 23:00 0.5941 0.6633 2.92
23:00 - 00:00 0.3941 0.6633 2.92
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2019, Sep 1 - Sep 7

0

2000

4000

6000

kW
h

Provided Electricity Consumption
Optimized Electricity Consumption

Fig. 2: Electricity Consumption Comparison
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Fig. 3: Electricity Generation Comparison

Sep 1 Sep 2 Sep 3 Sep 4 Sep 5 Sep 6 Sep 7   

2019, Sep 1 - Sep 7

0

1000

2000

3000

m
3

Optimized Gas Consumption
Provided Gas Consumption

Fig. 4: Gas Consumption Comparison

we can compare our solved optimal scheduling to the record
scheduling, which are presented in Fig. 2 - 5.

Fig. 2 shows that our optimized electricity consumption is
generally much lower than the historical record for all periods.
Fig. 3 suggests that the energy station should generate more
electricity for sale to gain more benefits. Fig. 4 tells that the
optimized gas consumption from our model is much higher
than the record for all periods. Based on the same cost function
formula (9a), we can compare our optimized cost values to
the calculated historical cost values based on the electricity
and gas consumption record. The results are shown in Fig. 5,
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Fig. 5: Cost Comparison

indicating a substantial saving on the total monetary spending.
The whole week’s spending from our optimized result is
6, 1430 RMB, which only occupies 50.05% of the calculated
historical cost value at 122, 740 RMB. This improvement is
at least 12% higher than the state of the art methods [5].

Our optimized scheduling results also suggest that two gas-
fired generators are always in operation during the whole
week, which contributes to the high consumption of the
natural gas. Although the gas price is not cheap, the gas-fired
generators convert the gas into electricity for sale, and the
flue gas and hot water from gas-fired generators are used in
the flue gas sub-chiller and the hot- water sub-chiller. So, the
entire energy cost turns out to be lower than using electricity.
The direct gas-fired sub-chillers remains inactive for the whole
week. The centrifugal electric chillers are active only when
the flue gas and hot water sub-chillers cannot satisfy the total
demand requirement.

VI. CONCLUSION

In this work we proposed a hybrid learning and model-
based optimization framework to minimize the operation cost
of HVAC system in a real world commercial energy station.
Instead of assuming a gray box for complex multi-thermal
process HVAC unit with constant characteristics, we lever-
aged learning-based methods to acquire accurate and varying
heuristic models for internal sub-units and formulated their
interaction constraints. Then, an overall model-based optimiza-
tion framework is proposed and solved to obtain the minimum
daily operation cost while satisfying the total cooling demand.
When applied to a real world commercial energy station, the
proposed hybrid learning and model-based method achieved a
substantial saving in energy cost, compared to the historical
data. The comparison suggests a reduced energy cost by 50%,
provided credible historical data, making it at least 12% more
efficient than the state-of-the-art methods. Future work is
needed to combine the proposed method with more granular
control designs that adjust indoor temperature, humidity, and
carbon dioxide density while still optimize the overall energy
consumption efficiency.
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