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Abstract— In this paper we introduce the objectives and
design principles of corrective control under cyber-physical
attacks. We propose two types of observer-based corrective
control for both the open-loop stable and the open-loop unstable
LTI systems. The basic idea of our corrective control design is to
use the observer as the ground-truth during the attack, making
the plant dynamics follow the observer behavior. This is the
opposite to the no-attack-detected period in which the observer
is designed to follow the plant dynamics. We show stability of
the proposed control under compromised sensor measurements,
and quantify the effects of the discrepancy between the observer
and the plant. Numerical examples, with illustrations using
microgrid energy dynamics, are presented to show benefits of
the proposed corrective control.

cyber-physical security, corrective control, observer, de-
ception attack; cyber-secure micro-grids

I. INTRODUCTION

The advancement of communication technologies has
enabled a deep merge of the information layer with the
physical layer in today’s man-made systems through em-
bedded distributed devices. In order to control the cost for
large-scale implementations, these devices usually have low
communication and computation capacities, making them
very vulnerable to cyber-physical attacks [1]. Their parts
are produced and assembled from different factories all over
the world, making the end users further difficult to trace
and check their security in advance. In recent years, cyber-
physical security problems become more prominent, some of
which have caused severe damages to the society.

Cyber-physical attacks can be roughly grouped into two
categories: the denial of service (DoS) attack and the de-
ception attack. The DoS attack aims at blocking or postpon-
ing communication among different physical components in
order to degrade the performance, or event destabilize the
system [2], [3]. The deception attack aims at destabilize
the system by injecting false data, compromised sensor
measurements, or malicious control commands [1], [4].

To ensure cyber-physical security from these attacks, many
defensive strategies have been proposed, including attack
detection schemes [5]–[9], secure state estimation strategies
[10]–[14], control consensus designs [1], [15], and security
controls [1], [16]–[18].

The secure state estimation is the core step for further
security control of the system after the identification of an
attack. While the Kalman filter technique has been used for
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decays to estimate system states [19], recently the observer-
based methods acquired more attention. Under sparse attack
assumptions, [20] showed that a system requires a certain
amount of uncorrupted sensors, at least two times the number
of the corrupted sensors, to remain resilient against sensor
attacks. Finding those uncorrupted sensor locations is a
combinatorial problem [5], which can be solved by either
brutal force search [13], [16] or optimization methods [21].
However, these methods usually depend on strong computa-
tion capability for finding the available distributed observers,
and rely on intensive communications. Thus, they may not
be suitable for quick-response required circumstances.

To tackle the situation when secure state estimation is
not available but prompt actions are required to regulate
the system behavior under attacks, in this paper we pro-
pose cyber-physical secure observer-based corrective control
methods. The basic idea is to use the observer as the ground-
truth during the attack, making the plant dynamics follow
the observer behavior. The approach can completely reject
any compromised sensor measurements for the open-loop
stable LTI system, and can maintain the intact observer
subsystem needed to establish a credible desired system
behavior reference for the open-loop unstable system. The
major contributions are summarized below.

1) We proposed the basic design principles for the cyber-
physical secure corrective control under sensor attacks.

2) We proposed an innovative framework to use the
Luenberger observer as a ground-truth to correct the
system behavior during sensor attacks.

3) We proposed the blind corrective control scheme for
open-loop stable LTI systems to defend against sensor
attacks, and showed asymptotic stability under the
finite attack energy assumption.

4) We proposed the switch-role corrective control scheme
for open-loop unstable LTI systems to defend against
sensor attacks and showed the input-to-state stability.

II. PROBLEM FORMULATION

A. Plant Dynamics

We consider our target plant as a continuous linear time-
invariant dynamical system given below.

ẋ(t) = Ax(t) +Bu(t) + d(t) (1)
y(t) = Cx(t) (2)

where A ∈ Rn×n is the open-loop matrix of the plant, B ∈
Rn×p is the control matrix, C ∈ Rm×n is the output matrix;
x(t) ∈ Rn is the state variable vector of the plant, u(t) ∈ Rp



is the control vector, d(t) ∈ Rn is the external disturbance
vector, y(t) ∈ Rm is the output vector of the plant, which
will be used in the observer shortly below.

We further assume that (A,B) is controllable, (A,C) is
observable, and the total energy of the disturbance d(t) is
finite, i.e.,

∫∞
0
d(t)T d(t)dt < +∞, so that the disturbance

will eventually be damped out by the closed-loop system.
This is an ideal assumption for asymptotic stability. In prac-
tice, systems nonetheless experience certain random noises.
As long as the noise is bounded, the closed-loop asymptotic
stable LTI system yields a bounded output.

B. Observer Setup

To estimate the states of system (1), we consider the
Luenberger observer as follow.

˙̂x(t) = Âx̂(t) +Bu(t) + L
(
y(t)− Cx̂(t)

)
(3)

where Â ∈ Rn×n is an estimation of the open-loop matrix
A of the plant, x̂(t) ∈ Rn is the state variable vector of
the observer, which is regarded as an estimate of the true
state variable x(t), L ∈ Rn×m is the observer gain matrix
which is designed to make x̂(t) quickly follow up the true
state variable x(t), typically 10× faster than system (1).
Note: The observer open-loop matrix Â is usually assumed
to be the same as the plant open-loop matrix A. In practice,
however, it is difficult to match Â with A exactly due to
some nonlinearity of the plant system, measurement errors,
etc. We will discuss the influence of this mismatch later
in Section III-E to quantify its influence on our corrective
control designs. The observer state variable x̂(t) is used to
design the feedback controller for both the observer system
(3) and the plant system (1).

u(t) = Kx̂(t)− r(t) (4)

where K ∈ Rm×n is the control gain matrix designed to
allocate the poles of the plant, r(t) ∈ Rn is an external
reference command which comes from a higher layer control
scheme with a slower time-scale. This is typical in many
engineering designs, for example, the automatic generation
control (AGC) in power systems. We will discuss this refer-
ence command signal r(t) shortly below.

C. Adversary Attack Model

Throughout this paper, we consider the active adversary
who is capable of altering the measurement from the sensors
and launching the deception attack.

In (2), instead of having an exact measurement y(t), we
have a compromised measurement ỹ(t) such that

ỹ(t) = Cx(t) + ω(t) (5)

where ω(t) ∈ Rm is the deception attack signal that has
been conspired and injected into the sensor. Therefore, the
observer model (3) becomes

˙̂x(t) = Âx̂(t) +Bu(t) + L
(
ỹ(t)− Cx̂(t)

)
(6)

We assume that: i) The deception attack signal ω(t) can be
detected; ii) The observer is intact; and, iii) The external

reference command signal r(t) is authentic. The first as-
sumption is based on numerous existing work which devotes
to identifying the existence of attack signals, for example,
the dynamic watermarking technique [7], [22], [23] actively
injects a credential signal to the system and monitor the
change of its statistic behavior to identify attacks. The second
assumption suggests that the parameters of the observer
system cannot be altered by the adversary. Our corrective
control designs will largely rely on this assumption. The third
assumption differentiates attacks on different control layers,
and brings our attention to the primary control layer only.

D. Corrective Control Objective

Our corrective control objective is to answer the following
question: Given an authentic external reference command
r(t), if the sensor measurements y(t) are compromised by a
deception attack ω(t), and the attack has been successfully
detected, can we design a corrective scheme to retain the
objective of the higher layer control command r(t).

In another word, we hope the external reference command
r(t) in (4) is still functioning in the compromised system, and
guide the corrective controller to yield the desired (maybe
degraded) outcome. For example, without any corrective
control designs, a generator’s output power can continuously
deviate away from its dispatch value by a deception attack.
While with some corrective scheme, the generator’s output
only temporarily deviates away from its dispatch value.

Note: A corrective controller is considered as an acting (or
backup) controller to replace the original one for a temporary
use only. One should never regard it as a full functioning
controller, nor expect it to achieve the same performance.
Otherwise, a duplicate original controller would serve the
purpose. For example in our circumstances, if a sensor
has been compromised, the most straightforward way is to
replace it with a duplicate sensor, provided the duplicate
sensor has been installed in advance.

The design principles of the corrective controller should
follow the following principles:

1) A corrective controller should be anchored to some
ground-truth information which can hardly be tam-
pered by the adversary. This is where “correction”
comes from.

2) A corrective controller should make a compromise
among cost, complexity, and performance. It should
be cheap to install (comparing to a duplicate original
controller), easy to apply and operate (less dependent
on frequent communications and heavy computations),
and able to achieve certain temporary control perfor-
mance.

3) A corrective controller should be effective for a broad
range of attack forms, rather than a specific attack
form.

III. OBSERVER-BASED CORRECTIVE CONTROL DESIGN

A. Ground-Truth Information

According to our control objective, given a detected at-
tack, the controller should “correct” the system behavior to



(partially) retain its primary goal. This correction must refer
to some ground-truth.

Recall the observer (6) and the plant (1), despite the
difference between Â and A, the observer can be regarded
as a replica of the original plant. If no attack happens, it
achieves the same desired state associated with the external
reference command r(t).

The basic idea of our corrective control design is to use
the observer as a ground-truth during the attack, making
the plant dynamics follow the observer’s behavior. This is
the opposite to the no-attack-detected period in which the
observer is designed to follow the plant dynamics.

B. Blind Corrective Control

If we assume that the open-loop system is stable, then we
design the corrective controller as follow.

ẋ(t) = Ax(t) +Bu(t) + d(t) (7a)
ỹ(t) = Cx(t) + ω(t) (7b)

˙̂x(t) = Âx̂(t) +Bu(t) + L(t)
(
ỹ(t)− Cx̂(t)

)
(7c)

u(t) = Kx̂(t)− r(t) (7d)

where

L(t) =

{
0, if ω(t) is detected
L, otherwise

(8)

When ω(t) is detected, the overall system is

ẋ(t) = Ax(t) +Bu(t) + d(t) (9a)
˙̂x(t) = Âx̂(t) +Bu(t) (9b)

The first advantage comes from the fact that (9) is com-
pletely quarantined from the compromised measurement
ỹ(t), thus, will never be influenced by the attack ω(t).

Let’s further assume that Â = A, then the error e(t) :=
x(t)− x̂(t) is given below.

ė(t) = Ae(t) + d(t) (10)

Since A is a stable matrix by our assumption, the error e(t)
will converge to zero in the asymptotic sense with finite
energy d(t). Comparing to the no-attack-detected case, the
error converges much slower in (10) because the observer
is “blind” of any external disturbance d(t), which gives the
name “blind corrective control”. It is the compromise we
have to make for keeping the observer intact while rejecting
any attacks on the sensor measurements.

The second advantage of (7) is that it can still follow
the instruction from the external reference command r(t). A
naive way of disabling the control matrix B can also reject
any sensor attacks, but it rejects external reference command
as well.

C. Switch-Role Corrective Control

In the case when the open-loop system is unstable, the
blind corrective control may lose stability. Therefore, we

provide another corrective control design below.

ẋ(t) = Ax(t) +Bu(t) + Lp
(
Cx̂(t)− ỹ(t)

)
+ d(t) (11a)

ỹ(t) = Cx(t) + ω(t) (11b)
˙̂x(t) = Âx̂(t) +Bu(t) + L

(
ỹ(t)− Cx̂(t)

)
(11c)

u(t) = Kx̂(t)− r(t) (11d)

where

Lp =

{
Lp, if ω(t) is detected
0, otherwise

(12a)

L =

{
0, if ω(t) is detected
L, otherwise

(12b)

When ω(t) is detected, the overall system is

ẋ(t) = Ax(t) +Bu(t) + Lp
(
Cx̂(t)− ỹ(t)

)
+ d(t) (13a)

˙̂x(t) = Âx̂(t) +Bu(t) (13b)

A first glance at (13) reminds people of a standard observer-
based control system, but with a flipped structure. The plant
system looks like an observer, while the observer system
looks like a plant. This is why we call it “switch-role
corrective control”. The main purpose of this design is to
ask the plant to follow the observer during the attack.

One may notice that in this case we are no longer able
to completely reject the attack signal ω(t) since in (13a) the
tampered measurement ỹ(t) still exists. Then, the question is,
what’s the benefit of doing this? Recall that if no corrective
control during an attack, the measurement ỹ(t) brings the
attack signal ω(t) to the observer system (6), compromising
the control signal u(t). This u(t), in return, enters the plant
system (1), polluting the plant dynamics. During this process,
neither the plant nor the observer remains credible. With
the switch-role corrective control, the observer system (13b)
rejects the attack signal ω(t) and remains intact, which
naturally serves as a ground-truth to guide the plant system.

If we assume that Â = A, the error e(t) := x̂(t) − x(t)
dynamics is

ė(t) = (A− LpC)e(t) + Lpω(t) + d(t) (14)

Although A is an unstable matrix, the error can still vanish
to zero in the asymptotic sense, provided a good design of
Lp and ω(t) = 0.

D. Stability Analysis

For the blind corrective control design, we show the
following result.

Theorem 1. For a given observer-based control system (7)
with the control design (8), if it is open-loop stable with
Â = A, and ω(t) is detected, the associated control system
(9) is globally asymptotically stable under finite energy
disturbance d(t).

Proof: Note that the observer subsystem (9b) is a stand-
alone globally asymptotically stable system. We need to



show the plant subsystem (9a) is also globally asymptotically
stable.

Recall (10), since A is a stable matrix, the natural response
of the error state e(t) is asymptotically stable. On the other
hand, we have finite energy disturbance d(t) which implies
that for any ε > 0, there exists a finite time T such that for
any t > T ,

∫∞
t
|d(t)| < ε. Hence, for any initial error e(0)

and any δ > 0, we can always find a time T ? such that for
any t > T ?, |e(t)| < δ. It suggests that the error system is
globally asymptotically stable.

Finally, the plant state x(t) = x̂(t) + e(t), which is also
globally asymptotically stable.

For the switch-role corrective control design, since the
attack signal ω(t) is not necessarily assumed to have finite
energy, we show the input-to-state stability [24].

Definition 1 (K function). A function γ : R+ → R+ is in
the K class if it is continuous, strictly increasing, unbounded,
and γ(0) = 0.

Definition 2 (KL function). A function β : R2
+ → R+ is in

the KL class if β(·, t) ∈ K for any t, and β(x, t) → 0 as
t→∞.

Definition 3 (input-to-state stability). Consider a dynamical
system with the state variable x(t) and the external input
s(t), if there exist some function β ∈ KL and γ ∈ K such
that

||x(t)||2 ≤ β(||x0||2, t) + γ(||s(t)||∞)

then we say the system is input-to-state stable.

Theorem 2. For a given observer-based control system
(11) with the control design (12), if Â = A, and ω(t) is
detected, then the associated control system (13) is input-to-
state stable.

Proof: System (13) can be expressed as follow.

ż(t) = Acz(t) +Bcs(t) (15)

where z(t) includes x(t) and x̂(t), s(t) includes ω(t), r(t),
and d(t), and

Ac =

[
A− LpC BK + LpC

0 A+BK

]
Bc =

[
−Lp −B I 0
0 −B 0 I

]
If s(t) = 0, by the argument in the proof of Theorem 1

system (15) is globally asymptotically stable, which implies
that Ac is stable. Hence, we have ||eAct||2 ≤ Ne−λt for
some N > 0 and λ > 0. Then,

||z(t)||2 = ||eActz0 +

∫ t

0

eAc(t−τ)Bcs(τ)dτ ||2

≤ Ne−λt||z0||2 + ||Bc||N
∫ t

0

e−λ(t−τ)dτ ||s||∞

= Ne−λt||z0||2 + ||Bc||
N

λ
(1− e−λt)||s||∞

≤ Ne−λt||z0||2 + ||Bc||
N

λ
||s||∞

Let β = Ne−λt||z0||2 and γ = ||Bc||Nλ ||s||∞, we have
β ∈ KL and γ ∈ K, which complete the proof.

E. Observer Fidelity under Variations

Our corrective controls rely on the fidelity of the observer
as the ground-truth to guide the behavior of the plant under
attack. In reality, the observer open-loop matrix Â may not
be the same as the plant open-loop matrix A. Therefore, we
need to quantify the effect of this discrepancy.

Suppose Â = A + δA, where δA ∈ Rn×n is a small
variation from A. During an attack, we have.

x̂ex∞ = A−1bk Br (17a)

x̂var∞ = (Abk + δA)−1Br (17b)

where x̂ex∞ is the steady state of the observer with exact
A, x̂var∞ is the steady state of the observer with a variation
A+ δA, Abk = A+BK. Now let’s quantify the difference
between x̂ex∞ and x̂var∞ with respect to δA.

Theorem 3. Suppose the external reference command r is
constant and non-zero, I + A−1bk δA is invertible, then the
difference dx̂ between x̂ex∞ and x̂var∞ satisfies

||dx̂||
||r||

≤ σm
σm − σa

σa
σ2
m

σb (18)

where σm is the smallest singular value of Abk, σa is the
largest singular value of δA, σb is the largest singular value
of B.

Proof: By [25] and I +A−1bk δA being invertible,

x̂var∞ = (Abk + δA)−1Br

= A−1bk Br − (I +A−1bk δA)
−1A−1bk (δA)A

−1
bk Br

Thus, we have

||dx̂||
||r||

=
||(I +A−1bk δA)

−1A−1bk (δA)A
−1
bk Br||

||r||
≤ ||(I +A−1bk δA)

−1||||A−1bk ||
2||δA||||B||

≤ σm
σm − σa

σa
σ2
m

σb

which concludes the proof.
Note that if δA is small enough, σa is close to zero,

which yields a small bound on dx̂, suggesting good fidelity
of the observer. On the other hand, if δA is large enough,
σa approaches σm, which drives σm

σm−σa
to infinity, creating

a large error bound on the final state of the observer.
In practical engineering, many systems can exhibit non-

linearity at different operating points, which can increase
the discrepancy between a pre-determined observer and
the plant. Using system identification techniques or other
learning-based methods can reduce this discrepancy.



IV. NUMERICAL DEMONSTRATIONS

A. Numerical Settings

For the blind corrective control experiment, we consider
the following open-loop stable System-1.

A =

−0.5 0.2 0.2
−0.1 −0.5 0
1 0 −1

 , L =

9.5 −1.875 −1.875
0.2 8.25 −0.75
0.2 −0.75 18.25


B =

 0 0
−1 0
0 1

 , C = I, K =

[
1.775 1.25 0.75
−2.875 −0.75 −0.75

]

r(t) =

{
[2.525,−3.625]T , t ≤ 50

[3.6625,−5.0625]T , t > 50

ω(t) = [0.4, 0.3, 0.4]T × δ(0.5t+ 10), t = 0, 1, 2, · · ·

For the switch-role corrective control experiment, we
consider the following open-loop unstable System-2.

A =

 0.5 0.2 0.2
−0.1 −0.5 0
1 0 −1

 , L =

10.5 −9.375 −9.375
0.2 7.75 −1.25
0.2 −1.25 17.75


B =

 0 0
−1 0
0 1

 , Lp =
20.5 −0.1 1
0.2 19.5 0
0.2 0 39


C = I, K =

[
9.275 1.75 1.25
−10.375 −1.25 −1.25

]
r(t) =

{
[10.525,−11.625]T , t ≤ 50

[15.4125, 16.8125]T , t > 50

ω(t) = [0.4, 0.3, 0.4]T × δ(0.5t+ 10), t = 0, 1, 2, · · ·

B. Blind Corrective Control Performance

In this experiment, we consider the open-loop stable
System-1 provided above. The external reference command
r(t) will change to a new value at 50 sec. The attack ω(t)
is launched at 10 sec with a repeated impulse signal every
0.5 seconds.

In Fig. 1, no attack is launched. System-1 stabilizes
quickly to a new equilibrium point when the external ref-
erence command changes at t = 50 sec.

In Fig. 2, System-1 is under attack but not corrective
control reacts. The attack signal creates oscillations to the
system and makes both the plant and observer states deviate
away from the desired equilibrium point, comparing to Fig. 1.

In Fig. 3, the proposed blind corrective control is initiated
after the attack was launched, with an assumed time delay
of 10 seconds (This delay depends on how fast the attack
can be detected). The plot shows that the blind corrective
control completely rejects the attack signal, and brings both
the plant and observer states back to the desired equilibrium
point.

In Fig. 4, we consider the same experiment setting as in
Fig. 3 except that we impose a small variation matrix δA on
the observer matrix. We randomly choose δA which satisfies
the condition | σa

σm
| ≤ 5%. From the plot one can see that

the observer and the plant converge to two slightly different
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Fig. 1: System-1: No Attack
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Fig. 2: System-1: under Attack without Corrective Control
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Fig. 3: System-1: under Attack with Blind Corrective Control
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Fig. 4: System-1 with Observer Variation: under Attack with
Blind Corrective Control

equilibrium points. The difference of these equilibrium points
is bounded by Theorem 3.

C. Switch-Role Corrective Control Performance

In this experiment, we consider the open-loop unstable
System-2. The external reference command r(t) will change
to a new value at 50 sec. The attack ω(t) is launched at 10
sec with a repeated impulse signal every 0.5 seconds.

In Fig. 5, no attack is launched. System-2 stabilizes
quickly to a new equilibrium point when the external ref-
erence command changes at t = 50 sec.

In Fig. 6, System-2 is under attack but not corrective
control reacts. One can see that the attack signal creates
oscillations to the system and makes both the plant and
observer states deviate away from the desired equilibrium
point, comparing to Fig. 5.
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Fig. 5: System-2: No Attack

0 10 20 30 40 50 60 70 80

Time (Sec)

2

3

4

5

R
es

po
ns

e

Fig. 6: System-2: under Attack without Corrective Control
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Fig. 7: System-2: under Attack with Blind Corrective Control

In Fig. 7, we launch the blind corrective control to
System-2 under attack. As we discussed in Section III-B,
the open-loop unstable system may lose stability with the
blind corrective control. As expected, the plant state blows
up shortly after the blind corrective control initiated in the
plot.

In Fig. 8, the proposed switch-role corrective control is
initiated after the attack was launched, with an assumed
time delay of 10 seconds. The plot shows that the switch-
role corrective control brings the observer state back to the
desired equilibrium point, and forces the plant state to follow
the observer state with a reduced oscillation amplitude when
comparing to Fig. 6. It verifies the argument in Section III-C
that the switch-role corrective control preserves the intactness
of the observer, and attempts to regulate the plant state based
on the observer behavior.

In Fig. 9, we consider the same experiment setting as in
Fig. 8 except that we impose a small variation matrix δA on
the observer matrix. We randomly choose δA which satisfies
the condition | σa

σm
| ≤ 5%. The influence of this variation is

bounded by Theorem 3.

V. CORRECTIVE CONTROL FOR MICROGRIDS

In this section we consider a real-world application of the
proposed corrective control to make microgrids cyber-secure.
A block diagram representation of a microgrid [26] is shown
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Fig. 8: System-2: under Attack with Switch-Role Corrective
Control
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Fig. 9: System-2 with Observer Variation: under Attack with
Switch-Role Corrective Control

in Fig. 10. In Fig. 10 a three-phase inverter interfaces a
photovoltaic (PV) voltage source to a three-phase ac load
via LCL filters. The control architecture shown in this figure
is based on the droop-based power control [26], wherein
based on the output voltage and current measurements, real
power and reactive power are calculated. The real power
is linearly related with system frequency using a synthetic
droop equation which is utilized to compute inverter voltage
angle (integral of frequency). Reactive power and voltage
are also related through a synthetic droop equation which
ensures reactive power sharing in a microgrid within parallel
inverters. This reactive power droop equation is used to pro-
vide voltage reference to the voltage controller which further
compares reference value to the measured value and passes
the error though a PI controller to further generate current
reference for the inner current loop. The current controller
compares the reference inverter current to the measured value
and then passes the error to a faster PI controller which
further generates the control voltage references which when

PV
module

Fig. 10: A solar PV microgrid connected to its local load with a
3-phase inveterter and a LCL filter.



converted to 3-phase abc domain from dq domain are called
inverter’s modulating signals. These modulating signals are
passed through the PWM generator which gives a high or
low pulse to the inverter switches to turn them on or of,
respectively.

Under deception attack on the microgrid [23] it is possible
that the measurement sensors of the output voltage and
currents can get tampered and the system control may go
unstable as real measurements are concealed. In such a case,
the proposed observer will come into action once the attack is
detected [7]. As the controller is then based on the observer
predicted system states, stability can again be ensured in
the microgrid. Depending on the structure of the microgrid,
complete mathematical formulation can be given based on
the proposed approach. For the single PV source based 3-
phase microgrid, states of the system are the filter inductor
currents iL, io and filter capacitor voltage vc, x = [iL vc io].
The output of the system is the load voltage and current vo
and io, [vo io]. The system control are the control voltage
signals vd, vq in dq domain, u = [vdq], or the modulating
signals ma,mb,mc in the abc domain, respectively. So the
entire system can be modelled in a linearized way [23].

A. Modeling Observer of Energy Dynamics

Notice that, strictly speaking, there is a switching non-
linearity introduced by the PWM implementation of micro-
grid control, but under the common assumption that LCL
filter will smooth out the output the model is LTI and
the theoretical results introduced in this paper are directly
applicable. However, when the PWM switching is model, the
switch leads to a bilinear model in which u is the switch posi-
tion [27]. In order to overcome this nonlinearity, we consider
a two-level energy model summarized next. Moreover, it can
be seen from Fig. 10 that closed-loop microgrid dynamics
can be quite complicated with multi-layer control. In such
a case, a multi-layered modeling approach is introduced:
the lower level is modeled in conventional state-space, and
the higher layer model uses aggregate energy variables [28].
Notably, complex dynamic interactions within the aggregate
model of the system are technology-agnostic and take on
the standard state space form given in Equation (2). This
model is expressed in terms of aggregate state variables
stored energy E, rate of change of stored energy p and energy
stored in tangent space Et and are used to model the higher
level interactions of microgrid with the rest of the system.
The state space energy model is given as follows (19):

Ė = P − E/τ = p (19)
ṗ = 4Et − Q̇ (20)
Ėt = Pt − Et/τ (21)

For a microgrid in Figure 10 with one a single RL filter these
state variables are are defined as

E = Li2/2 (22)
p = Lii̇ (23)
Et = Li̇2/2 (24)
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Fig. 11: Microgrid under Attack without Corrective Control

These state variables are functions of themselves and Pt =
dv
dt
di
dt and Q̇ = dv

dt i −
di
dtv representing interactions with

the rest of the system [28], [29]. This modeling approach
confines the system model to a third order model which
remains same in its fundamental structure independent from
the actual internal system complexity.

x = [E p Et]
T (25)

and the energy control [30]

u = [Q̇ Pt]
T (26)

With this mapping of physical state to energy model states,
we can apply the proposed switch-role corrective control (11)
to the microgrid.

B. Simulation Results: Application to a Microgrid
The microgrid system shown in Figure 10 takes on the

form given in Equation (25) where A, B, K, L, and Lp,
where L is used for the observer subsystem, and Lp for the
plant subsystem.

A =

0 1 0
0 0 4
0 0 −2

 , L =

10 1 0
0 20 4
0 0 28


B =

 0 0
−1 0
0 1

 , Lp =

40 1 0
0 80 4
0 0 118


C = I, K =

[
6 5 4
0 0 1

]
In the first experiment, we simulate an attack on the

system. The disturbance is random noise for a duration of
0.05 seconds, every second for a 20 second simulation. An
observer is used to track the primary system and observer
control is used in the primary system- in this case the
observer is tracking tampered system variables. The observer
values are tampered (green curve in Fig. 11), so when
observer control is used in the primary system, the system
does not stabilize as well under attack (orange curve in
Fig. 11).

In the second experiment, we simulate the same attack on
the system. This time, our observer rejects the attack signal
and serves as the ground-truth (green curve in Fig. 12), and
then the observer control is used in the primary system to re-
stabilize and bring closer to the untampered variable values
(orange curve in Fig. 12). The system returns to untampered
values much faster than in the previous case because the
observer is holding the ground-truth, not tampered variables.
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Fig. 12: Microgrid under Attack with Switch-Role Corrective
Control

VI. CONCLUSION

This paper proposes cyber-secure observer-based correc-
tive control under sensor deception attacks when secure
state estimation is not available. Solutions are proposed for
both open-loop stable and open-loop unstable LTI systems.
The principal idea is to use the observer as the ground-
truth, preserve its intactness, and make the plant dynamics
follow the observer behavior during the attack. We showed
stability of the proposed methods in the appropriate senses,
and characterized the effects of the discrepancy between
the observer and the plant. Numerical simulations, with an
application to making cyber-secure microgrids, are shown.

The proposed corrective control strategy is a stand-alone
technique which has low complexity, is easy to implement
at low cost, and requires no centralized coordination. Future
research directions include distributed observers and defense
against a broader range of attacks.
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